Working with dplyr and ggplot2

dplyr - Data Mainpulation Package

Intorduction

Most of the data scientists spend 70 to 80% of their time on data preparation for a given project also known as wrangling or cleaning or simply we can say data manipulations, so dplyr is one of the most popular package which can help R users to solve on preparing or manipulating the dataset before going for actual analysis or modeling. some of those operations such as selecting required columns, adding a new column, filtering required observations, or even some of the tasks like sorting or aggregating

dplyr has couple of functions like

select()
filter()
mutate()
arrange()
summarize()

and %>% operator

Install required packages

load the packages

library(dplyr)
library(ggplot2)

loading and examine the dataset

#for illustration purpose take the diamonds dataset from ggplot2 package and attached to this session
data(diamonds)
#examin first 6 observations
head(diamonds)
## # A tibble: 6 x 10
##   carat cut       color clarity depth table price     x     y     z
##   <dbl> <ord>     <ord> <ord>   <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1 0.23  Ideal     E     SI2      61.5    55   326  3.95  3.98  2.43
## 2 0.21  Premium   E     SI1      59.8    61   326  3.89  3.84  2.31
## 3 0.23  Good      E     VS1      56.9    65   327  4.05  4.07  2.31
## 4 0.290 Premium   I     VS2      62.4    58   334  4.2   4.23  2.63
## 5 0.31  Good      J     SI2      63.3    58   335  4.34  4.35  2.75
## 6 0.24  Very Good J     VVS2     62.8    57   336  3.94  3.96  2.48
#take help from r documentation
#?diamonds
#examine the data
dim(diamonds)
## [1] 53940    10
str(diamonds)
## Classes 'tbl_df', 'tbl' and 'data.frame':    53940 obs. of  10 variables:
##  $ carat  : num  0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 ...
##  $ cut    : Ord.factor w/ 5 levels "Fair"<"Good"<..: 5 4 2 4 2 3 3 3 1 3 ...
##  $ color  : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<..: 2 2 2 6 7 7 6 5 2 5 ...
##  $ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<..: 2 3 5 4 2 6 7 3 4 5 ...
##  $ depth  : num  61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 ...
##  $ table  : num  55 61 65 58 58 57 57 55 61 61 ...
##  $ price  : int  326 326 327 334 335 336 336 337 337 338 ...
##  $ x      : num  3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 ...
##  $ y      : num  3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 ...
##  $ z      : num  2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 ...
summary(diamonds)
##      carat               cut        color        clarity     
##  Min.   :0.2000   Fair     : 1610   D: 6775   SI1    :13065  
##  1st Qu.:0.4000   Good     : 4906   E: 9797   VS2    :12258  
##  Median :0.7000   Very Good:12082   F: 9542   SI2    : 9194  
##  Mean   :0.7979   Premium  :13791   G:11292   VS1    : 8171  
##  3rd Qu.:1.0400   Ideal    :21551   H: 8304   VVS2   : 5066  
##  Max.   :5.0100                     I: 5422   VVS1   : 3655  
##                                     J: 2808   (Other): 2531  
##      depth           table           price             x         
##  Min.   :43.00   Min.   :43.00   Min.   :  326   Min.   : 0.000  
##  1st Qu.:61.00   1st Qu.:56.00   1st Qu.:  950   1st Qu.: 4.710  
##  Median :61.80   Median :57.00   Median : 2401   Median : 5.700  
##  Mean   :61.75   Mean   :57.46   Mean   : 3933   Mean   : 5.731  
##  3rd Qu.:62.50   3rd Qu.:59.00   3rd Qu.: 5324   3rd Qu.: 6.540  
##  Max.   :79.00   Max.   :95.00   Max.   :18823   Max.   :10.740  
##                                                                  
##        y                z         
##  Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 4.720   1st Qu.: 2.910  
##  Median : 5.710   Median : 3.530  
##  Mean   : 5.735   Mean   : 3.539  
##  3rd Qu.: 6.540   3rd Qu.: 4.040  
##  Max.   :58.900   Max.   :31.800  
## 

select()

Select perticular interested columns from the dataset

# select only the variables carat, color and price
select(diamonds, carat, color, price)
## # A tibble: 53,940 x 3
##    carat color price
##    <dbl> <ord> <int>
##  1 0.23  E       326
##  2 0.21  E       326
##  3 0.23  E       327
##  4 0.290 I       334
##  5 0.31  J       335
##  6 0.24  J       336
##  7 0.24  I       336
##  8 0.26  H       337
##  9 0.22  E       337
## 10 0.23  H       338
## # ... with 53,930 more rows

filter()

filter acts like subsetting the data based on certain conditions

# examine the factors in cut variable
table(diamonds$cut)
## 
##      Fair      Good Very Good   Premium     Ideal 
##      1610      4906     12082     13791     21551
# subsetting or filtering the diamonds dataset where cut==”Premium”
filter(diamonds, cut=="Premium")
## # A tibble: 13,791 x 10
##    carat cut     color clarity depth table price     x     y     z
##    <dbl> <ord>   <ord> <ord>   <dbl> <dbl> <int> <dbl> <dbl> <dbl>
##  1 0.21  Premium E     SI1      59.8    61   326  3.89  3.84  2.31
##  2 0.290 Premium I     VS2      62.4    58   334  4.2   4.23  2.63
##  3 0.22  Premium F     SI1      60.4    61   342  3.88  3.84  2.33
##  4 0.2   Premium E     SI2      60.2    62   345  3.79  3.75  2.27
##  5 0.32  Premium E     I1       60.9    58   345  4.38  4.42  2.68
##  6 0.24  Premium I     VS1      62.5    57   355  3.97  3.94  2.47
##  7 0.290 Premium F     SI1      62.4    58   403  4.24  4.26  2.65
##  8 0.22  Premium E     VS2      61.6    58   404  3.93  3.89  2.41
##  9 0.22  Premium D     VS2      59.3    62   404  3.91  3.88  2.31
## 10 0.3   Premium J     SI2      59.3    61   405  4.43  4.38  2.61
## # ... with 13,781 more rows

mutate()

Mutate function is generally used to add variables to our dataset

diamondsNew<- mutate(diamonds, pricePerCarat = price/carat)
#examine the new dataset whether new variable is added or not
head(diamondsNew)
## # A tibble: 6 x 11
##   carat cut       color clarity depth table price     x     y     z
##   <dbl> <ord>     <ord> <ord>   <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1 0.23  Ideal     E     SI2      61.5    55   326  3.95  3.98  2.43
## 2 0.21  Premium   E     SI1      59.8    61   326  3.89  3.84  2.31
## 3 0.23  Good      E     VS1      56.9    65   327  4.05  4.07  2.31
## 4 0.290 Premium   I     VS2      62.4    58   334  4.2   4.23  2.63
## 5 0.31  Good      J     SI2      63.3    58   335  4.34  4.35  2.75
## 6 0.24  Very Good J     VVS2     62.8    57   336  3.94  3.96  2.48
## # ... with 1 more variable: pricePerCarat <dbl>
names(diamondsNew)
##  [1] "carat"         "cut"           "color"         "clarity"      
##  [5] "depth"         "table"         "price"         "x"            
##  [9] "y"             "z"             "pricePerCarat"

arrange()

this function is used to sort or ordering the data

# first we will see the first 6 diamonds price in our dataset
head(diamonds$depth)
## [1] 61.5 59.8 56.9 62.4 63.3 62.8
# then we can use arrange function on top of this vector of first six observationds of depth variable
head(arrange(diamonds,depth))
## # A tibble: 6 x 10
##   carat cut   color clarity depth table price     x     y     z
##   <dbl> <ord> <ord> <ord>   <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1  1    Fair  G     SI1      43      59  3634  6.32  6.27  3.97
## 2  1.09 Ideal J     VS2      43      54  4778  6.53  6.55  4.12
## 3  1    Fair  G     VS2      44      53  4032  6.31  6.24  4.12
## 4  1.43 Fair  I     VS1      50.8    60  6727  7.73  7.25  3.93
## 5  0.3  Fair  E     VVS2     51      67   945  4.67  4.62  2.37
## 6  0.7  Fair  D     SI1      52.2    65  1895  6.04  5.99  3.14
# the above output is basically shows in ascending order
# you can use desc() function inside arrange to make descending the data
head(arrange(diamonds,desc(depth)))
## # A tibble: 6 x 10
##   carat cut   color clarity depth table price     x     y     z
##   <dbl> <ord> <ord> <ord>   <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1  0.5  Fair  E     VS2      79      73  2579  5.21  5.18  4.09
## 2  0.5  Fair  E     VS2      79      73  2579  5.21  5.18  4.09
## 3  1.03 Fair  E     I1       78.2    54  1262  5.72  5.59  4.42
## 4  0.99 Fair  J     I1       73.6    60  1789  6.01  5.8   4.35
## 5  0.9  Fair  G     SI1      72.9    54  2691  5.74  5.67  4.16
## 6  0.96 Fair  G     SI2      72.2    56  2438  6.01  5.81  4.28

summarize()

This function is used to get the summary statistics of the data its very powerfull when we use this function with the combination of groupby

#to get the average of price variable
summarize(diamonds, avgPrice = mean(price, na.rm = TRUE) )
## # A tibble: 1 x 1
##   avgPrice
##      <dbl>
## 1    3933.
#combination of summarize/summarise with group_by
summarise(group_by(diamonds, cut), mean=mean(price, na.rm = TRUE))
## # A tibble: 5 x 2
##   cut        mean
##   <ord>     <dbl>
## 1 Fair      4359.
## 2 Good      3929.
## 3 Very Good 3982.
## 4 Premium   4584.
## 5 Ideal     3458.
summarize(group_by(diamonds, cut), mean=mean(price, na.rm = TRUE))
## # A tibble: 5 x 2
##   cut        mean
##   <ord>     <dbl>
## 1 Fair      4359.
## 2 Good      3929.
## 3 Very Good 3982.
## 4 Premium   4584.
## 5 Ideal     3458.

%>% operator

The actual power of dplyr package lies in the usage of pipe operator (%>%), its very usefull when ever we required a chain of operations(series of activities) to work on one after another or using one command’s result as input for another command

#Now we will use those above functions filter select and mutate and combine them into one and get the result by using %>% operator  
# filter(diamonds, cut=="Premium")
#select(diamonds, carat, color, price)
# diamondsNew<- mutate(diamonds, pricePerCarat = price/carat)


diamondsPipe <- diamonds %>% filter(cut=="Premium") %>% select(carat, color, price) %>% mutate(pricePerCarat = price/carat)
head(diamondsPipe)
## # A tibble: 6 x 4
##   carat color price pricePerCarat
##   <dbl> <ord> <int>         <dbl>
## 1 0.21  E       326         1552.
## 2 0.290 I       334         1152.
## 3 0.22  F       342         1555.
## 4 0.2   E       345         1725 
## 5 0.32  E       345         1078.
## 6 0.24  I       355         1479.

ggplot2 - Data Visualization Package

R is one of the most powerfull language for visualizations with minimal lines of code ggplot2 is one of the package which can help the analysts to visualising the data by simple plotting to advanced visualisations

diamonds %>% 
  filter(cut == "Ideal") %>% 
  ggplot(aes(x=color,y=price)) + 
geom_boxplot()     

comments powered by Disqus